Computer vision: Run your code on your phone camera + Face bluring import numpy as np import cv2 import os os.chdir(r"E:\faceeyedetection") cap =cv2.VideoCapture(0) address = 'put your address here' cap.open(address) face_cascade =cv2.CascadeClassifier("haarcascade_frontalface_default.xml") #eyes_cascade =cv2.CascadeClassifier("haarcascade_eye.xml") while(cap.isOpened()): ret ,frame =cap.read() gray =cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces =face_cascade.detectMultiScale(gray ,1.3 , 4) for (x,y,h,w) in faces : img = cv2.rectangle(frame ,(x,y),(x+w ,y+h),(0,255,0),3) ...
Posts
- Get link
- X
- Other Apps
Computer vision:eye detection using open CV import numpy as np import cv2 import os os.chdir(r"E:\faceeyedetection") cap =cv2.VideoCapture(0) face_cascade =cv2.CascadeClassifier("haarcascade_frontalface_default.xml") eyes_cascade =cv2.CascadeClassifier("haarcascade_eye.xml") while(cap.isOpened()): ret ,frame =cap.read() gray =cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces =face_cascade.detectMultiScale(gray ,1.3 , 4) for (x,y,h,w) in faces : cv2.rectangle(frame ,(x,y),(x+w ,y+h),(0,255,0),3) roi_gray=gray[y:y+h ,x:x+w] roi_color=frame[y:y+h ,x:x+w] eyes =eyes_cascade.detectMultiScale(roi_gray)...
- Get link
- X
- Other Apps
Computer vision:Face Detection using Haar Cascade Classifiers import numpy as np import cv2 import os os.chdir(r"E:\faceeyedetection") cap =cv2.VideoCapture(0) face_cascade =cv2.CascadeClassifier("haarcascade_frontalface_default.xml") eyes_cascade =cv2.CascadeClassifier("haarcascade_eye.xml") while(cap.isOpened()): ret ,frame =cap.read() gray =cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) faces =face_cascade.detectMultiScale(gray ,1.3 , 4) for (x,y,h,w) in faces : cv2.rectangle(frame ,(x,y),(x+w ,y+h),(0,255,0),3) roi_gray=gray[y:y+h ,x:x+w] roi_color=frame[y:y+h ,x:x+w] eyes =eyes_cascade.detectMultiScale(roi_gray) for(ex,ey,eh,ew)...
- Get link
- X
- Other Apps
Computer Vision: image Histograms and contrast stretching using OpenCV Python import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread("lena.jpg") #img = np.zeros((200,200), np.uint8) #cv.rectangle(img, (0, 100), (200, 200), (255), -1) #cv.rectangle(img, (0, 50), (100, 100), (127), -1) b, g, r = cv.split(img) cv.imshow("img", img) cv.imshow("b", b) cv.imshow("g", g) cv.imshow("r", r) plt.hist(b.ravel(), 256, [0, 256]) plt.hist(g.ravel(), 256, [0, 256]) plt.hist(r.ravel(), 256, [0, 256]) hist = cv.calcHist([img], [0], None, [256], [0, 256]) plt.plot(hist) plt.show() cv.waitKey(0) cv.destroyAllWindows() ============================== Data used in this video ============================= if you faced any issue contact me via what 's app : +201210894349 or facebook
- Get link
- X
- Other Apps
Computer vision: Detect Simple Geometric Shapes using OpenCV in Python | arabic import numpy as np import cv2 img = cv2.imread('shapes.jpg') imgGrey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) _, thrash = cv2.threshold(imgGrey, 240, 255, cv2.THRESH_BINARY) contours, _ = cv2.findContours(thrash, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cv2.imshow("img", img) for contour in contours: approx = cv2.approxPolyDP(contour, 0.01* cv2.arcLength(contour, True), True) cv2.drawContours(img, [approx], 0, (0, 0, 0), 5) x = approx.ravel()[0] y = approx.ravel()[1] - 5 if len(approx) == 3: cv2.putText(img, "Triangle", (x, y), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0)) ...
- Get link
- X
- Other Apps
Computer vision:Vehicle detection and counting using openCV | Arabic import cv2 import numpy as np from time import sleep largura_min = 80 altura_min = 80 offset = 6 pos_linha = 550 # FPS to vĂdeo delay = 60 detec = [] carros = 0 def pega_centro(x, y, w, h): x1 = int(w / 2) y1 = int(h / 2) cx = x + x1 cy = y + y1 return cx, cy # video source input cap = cv2.VideoCapture('video.mp4') subtracao = cv2.bgsegm.createBackgroundSubtractorMOG() while True: ret, frame1 = cap.read() tempo = float(1/delay) sleep(tempo) grey = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(grey, (3, 3), 5) img_sub = subtracao.apply(blur) ...
- Get link
- X
- Other Apps
Computer vision: detect , track and count car and moto in video using openCV computer vision import cv2 from tracker import * import os os.chdir("D:\object traking\object_tracking") result = cv2.VideoWriter('ahmedd.mp4', cv2.VideoWriter_fourcc(*'XVID'), 20, (250,250)) # Create tracker object tracker = EuclideanDistTracker() cap = cv2.VideoCapture("highway.mp4") # Object detection from Stable camera object_detector = cv2.createBackgroundSubtractorMOG2(history=100, varThreshold=50) # if history is big number it will be hight while True: ret, frame = cap.read() if ret is not True: break height, w...