from matplotlib import pyplot as plt
import cv2
img = cv2.imread('lena.jpg', -1)
cv2.imshow('image', img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.xticks([]), plt.yticks([])#ticks
plt.show()#show
cv2.waitKey(0)
cv2.destroyAllWindows()#close window ========================================== secod code

import numpy as np
from matplotlib import pyplot as plt
import cv2 as cv
img = cv.imread('gradient.png',0)
_, th1 = cv.threshold(img, 50, 255, cv.THRESH_BINARY)
_, th2 = cv.threshold(img, 200, 255, cv.THRESH_BINARY_INV)
_, th3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)
_, th4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)
_, th5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, th1 ,th2 ,th3 ,th4, th5]
for i in range(6):
plt.subplot(2, 3, i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])#ticks
#cv.imshow("Image", img)
#cv.imshow("th1", th1)
#cv.imshow("th2", th2)
#cv.imshow("th3", th3)
#cv.imshow("th4", th4)
#cv.imshow("th5", th5)
plt.show()#show
#cv.waitKey(0)
#cv.destroyAllWindows()#close window

#===================================#

data used in this video



#===================================#

if you faced any issue contact me via 

what's app : +201210894349

 or facebook

Comments

Popular posts from this blog