Computer vision:Drowsiness Detection using YOLOv5
#!pip install torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu
#!git clone https://github.com/ultralytics/yolov5
#!cd yolov5 & pip install -r requirements.txt
import os
os.chdir(r"C:\Users\amb\Downloads\drownsenesyolov5")
import torch
from matplotlib import pyplot as plt
import numpy as np
import cv2
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
img = 'https://resources.stuff.co.nz/content/dam/images/1/k/q/r/d/c/image.related.StuffLandscapeSixteenByNine.1420x800.1kseqt.png/1501707394942.jpg'
results = model(img)
results.print()
results.render()
%matplotlib inline
plt.imshow(np.squeeze(results.render()))
plt.show()
results.show()
results.xyxy
np.squeeze(results.render()).shape
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
# Make detections
results = model(frame)
cv2.imshow('YOLO', np.squeeze(results.render()))
if cv2.waitKey(10)== ord('q'):
break
cap.release()
cv2.destroyAllWindows()
import uuid # Unique identifier
import os
import time
IMAGES_PATH = os.path.join('data', 'images') #/data/images
labels = ['awake', 'drowsy']
number_imgs = 20
cap = cv2.VideoCapture(0)
# Loop through labels
for label in labels:
print('Collecting images for {}'.format(label))
time.sleep(5)
# Loop through image range
for img_num in range(number_imgs):
print('Collecting images for {}, image number {}'.format(label, img_num))
# Webcam feed
ret, frame = cap.read()
# Naming out image path
imgname = os.path.join(IMAGES_PATH, label+'.'+str(uuid.uuid1())+'.jpg')
# Writes out image to file
cv2.imwrite(imgname, frame)
# Render to the screen
cv2.imshow('Image Collection', frame)
# 2 second delay between captures
time.sleep(3)
if cv2.waitKey(10) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
for label in labels:
print('Collecting images for {}'.format(label))
for img_num in range(number_imgs):
print('Collecting images for {}, image number {}'.format(label, img_num))
imgname = os.path.join(IMAGES_PATH, label+'.'+str(uuid.uuid1())+'.jpg')
print(imgname)
!cd yolov5 && python train.py --img 320 --batch 16 --epochs 50 --data dataset.yaml --weights yolov5s.pt --workers 2
model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5/runs/train/exp20/weights/last.pt', force_reload=True)
img = os.path.join('data', 'images', 'awake-572bea22-6e6f-11ed-a895-8cdcd4d59021_jpg.rf.fda3b6c3f6b56d4d0726c67894d25117.jpg')
resul = model(img)
resul.print()
resul.show()
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
# Make detections
results = model(frame)
cv2.imshow('YOLO', np.squeeze(results.render()))
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
#===================================#
if you faced any issue contact me via
what's app : +201210894349
or facebook
Comments
Post a Comment
I hope you have benefited from this blog, and if you have any question, feel free to leave it here.